Biblio
Filters: Author is Dejian, Li [Clear All Filters]
A Framework For Network Intrusion Detection Based on Unsupervised Learning. 2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID). :188–193.
.
2021. Anomaly detection is the primary method of detecting intrusion. Unsupervised models, such as auto-encoders network, auto-encoder, and GMM, are currently the most widely used anomaly detection techniques. In reality, the samples used to train the unsupervised model may not be pure enough and may include some abnormal samples. However, the classification effect is poor since these approaches do not completely understand the association between reconstruction errors, reconstruction characteristics, and irregular sample density distribution. This paper proposes a novel intrusion detection system architecture that includes data collection, processing, and feature extraction by integrating data reconstruction features, reconstruction errors, auto-encoder parameters, and GMM. Our system outperforms other unsupervised learning-based detection approaches in terms of accuracy, recall, F1-score, and other assessment metrics after training and testing on multiple intrusion detection data sets.
TrustZone Based Virtual Architecture of Power Intelligent Terminal. 2021 9th International Conference on Intelligent Computing and Wireless Optical Communications (ICWOC). :33–36.
.
2021. Three issues should be addressed in ubiquitous power Internet of things (IoT) terminals, such as lack of terminal standardization, high business coupling and weak local intelligent processing ability. The application of operating system in power IoT terminals provides the possibility to solve the above problems, but needs to address the real-time and security problems. In this paper, TrustZone based virtualization architecture is used to tackle the above real-time and security problems, which adopts the dual system architecture of real-time operating system (FreeRTOS) to run real-time tasks, such as power parameter acquisition and control on the real-time operating system, to solve the real-time problem; And non real-time tasks are run on the general operating system(Linux) to solve the expansibility problem of power terminals with hardware assisted virtualization technology achieving the isolation of resources, ensuring the safety of power related applications. The scheme is verified on the physical platform. The results show that the dual operating system power IoT terminal scheme based on ARM TrustZone meets the security requirements and has better real-time performance, with unifying terminal standards, business decoupling and enhancing local processing capacity.