Biblio
Filters: Author is Deng, Zhidong [Clear All Filters]
Predicting Entity Relations across Different Security Databases by Using Graph Attention Network. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :834–843.
.
2021. Security databases such as Common Vulnerabilities and Exposures (CVE), Common Weakness Enumeration (CWE), and Common Attack Pattern Enumeration and Classification (CAPEC) maintain diverse high-quality security concepts, which are treated as security entities. Meanwhile, security entities are documented with many potential relation types that profit for security analysis and comprehension across these three popular databases. To support reasoning security entity relationships, translation-based knowledge graph representation learning treats each triple independently for the entity prediction. However, it neglects the important semantic information about the neighbor entities around the triples. To address it, we propose a text-enhanced graph attention network model (text-enhanced GAT). This model highlights the importance of the knowledge in the 2-hop neighbors surrounding a triple, under the observation of the diversity of each entity. Thus, we can capture more structural and textual information from the knowledge graph about the security databases. Extensive experiments are designed to evaluate the effectiveness of our proposed model on the prediction of security entity relationships. Moreover, the experimental results outperform the state-of-the-art by Mean Reciprocal Rank (MRR) 0.132 for detecting the missing relationships.
Intelligent Notification System for Large User Groups. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :1213—1216.
.
2021. With the development of communication technology, the disadvantages of traditional notification methods such as low efficiency gradually appear. With the introduction of WAP with WTLS security and its development and maintenance, more and more notification systems are using this technology. Through the analysis, design and implementation of notification system for large user groups, this paper studies how to collect and notify data without affecting the business system, and proposes a scheme of real-time data acquisition and filtering based on trigger. The middleware and application server implementation transaction management and database operation to separate CICS middleware technology based on research using UNIXC, Socket programming, SQL statements, SYBASE database technology, from the system requirements, business process, function structure, database and data structure, the input and output of the system, system testing the aspects such as design of practical significance to intelligent notification system for large user groups. Finally, the paper describes the test effect of the system in detail. 10 users send 1, 5, 10 and 20 strokes at the same time, and the completion time is 0.28, 1.09, 1.58 and 2.20 seconds, which proves that the system has practical significance.