Visible to the public Biblio

Filters: Author is Ball, Edward  [Clear All Filters]
2022-03-01
Alrubei, Subhi, Ball, Edward, Rigelsford, Jonathan.  2021.  Securing IoT-Blockchain Applications Through Honesty-Based Distributed Proof of Authority Consensus Algorithm. 2021 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1–7.
Integrating blockchain into Internet of Things (IoT) systems can offer many advantages to users and organizations. It provides the IoT network with the capability to distribute computation over many devices and improves the network's security by enhancing information integrity, ensuring accountability, and providing a way to implement better access control. The consensus mechanism is an essential part of any IoT-blockchain platform. In this paper, a novel consensus mechanism based on Proof-of-Authority (PoA) and Proof-of-Work (PoW) is proposed. The security advantages provided by PoW have been realized, and its long confirmation time can be mitigated by combining it with PoA in a single consensus mechanism called Honesty-based Distributed Proof-of-Authority (HDPoA) via scalable work. The measured results of transaction confirmation time and power consumption, and the analyses of security aspects have shown that HDPoA is a suitable and secure protocol for deployment within blockchain-based IoT applications.