Visible to the public Biblio

Filters: Author is Liu, Qi  [Clear All Filters]
2022-10-03
Wang, Youning, Liu, Qi, Wang, Yang.  2021.  An Improved Bi-LSTM Model for Entity Extraction of Intellectual Property Using Complex Graph. 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). :1920–1925.
The protection of Intellectual Property (IP) has gradually increased in recent years. Traditional intellectual property management service has lower efficiency for such scale of data. Considering that the maturity of deep learning models has led to the development of knowledge graphs. Relevant researchers have investigated the application of knowledge graphs in different domains, such as medical services, social media, etc. However, few studies of knowledge graphs have been undertaken in the domain of intellectual property. In this paper, we introduce the process of building a domain knowledge graph and start from data preparation to conduct the research of named entity recognition.
2022-03-08
Wang, Xinyi, Yang, Bo, Liu, Qi, Jin, Tiankai, Chen, Cailian.  2021.  Collaboratively Diagnosing IGBT Open-circuit Faults in Photovoltaic Inverters: A Decentralized Federated Learning-based Method. IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society. :1–6.
In photovoltaic (PV) systems, machine learning-based methods have been used for fault detection and diagnosis in the past years, which require large amounts of data. However, fault types in a single PV station are usually insufficient in practice. Due to insufficient and non-identically distributed data, packet loss and privacy concerns, it is difficult to train a model for diagnosing all fault types. To address these issues, in this paper, we propose a decentralized federated learning (FL)-based fault diagnosis method for insulated gate bipolar transistor (IGBT) open-circuits in PV inverters. All PV stations use the convolutional neural network (CNN) to train local diagnosis models. By aggregating neighboring model parameters, each PV station benefits from the fault diagnosis knowledge learned from neighbors and achieves diagnosing all fault types without sharing original data. Extensive experiments are conducted in terms of non-identical data distributions, various transmission channel conditions and whether to use the FL framework. The results are as follows: 1) Using data with non-identical distributions, the collaboratively trained model diagnoses faults accurately and robustly; 2) The continuous transmission and aggregation of model parameters in multiple rounds make it possible to obtain ideal training results even in the presence of packet loss; 3) The proposed method allows each PV station to diagnose all fault types without original data sharing, which protects data privacy.