Visible to the public Biblio

Filters: Author is Do, Jaeyoung  [Clear All Filters]
2022-03-08
Kim, Ji-Hoon, Park, Yeo-Reum, Do, Jaeyoung, Ji, Soo-Young, Kim, Joo-Young.  2021.  Accelerating Large-Scale Nearest Neighbor Search with Computational Storage Device. 2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). :254—254.
K-nearest neighbor algorithm that searches the K closest samples in a high dimensional feature space is one of the most fundamental tasks in machine learning and image retrieval applications. Computational storage device that combines computing unit and storage module on a single board becomes popular to address the data bandwidth bottleneck of the conventional computing system. In this paper, we propose a nearest neighbor search acceleration platform based on computational storage device, which can process a large-scale image dataset efficiently in terms of speed, energy, and cost. We believe that the proposed acceleration platform is promising to be deployed in cloud datacenters for data-intensive applications.