Visible to the public Biblio

Filters: Author is Yang, Mengde  [Clear All Filters]
2022-03-10
Yang, Mengde.  2021.  A Survey on Few-Shot Learning in Natural Language Processing. 2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA). :294—297.
The annotated dataset is the foundation for Supervised Natural Language Processing. However, the cost of obtaining dataset is high. In recent years, the Few-Shot Learning has gradually attracted the attention of researchers. From the definition, in this paper, we conclude the difference in Few-Shot Learning between Natural Language Processing and Computer Vision. On that basis, the current Few-Shot Learning on Natural Language Processing is summarized, including Transfer Learning, Meta Learning and Knowledge Distillation. Furthermore, we conclude the solutions to Few-Shot Learning in Natural Language Processing, such as the method based on Distant Supervision, Meta Learning and Knowledge Distillation. Finally, we present the challenges facing Few-Shot Learning in Natural Language Processing.