Visible to the public Biblio

Filters: Author is Samy, Salma  [Clear All Filters]
2022-09-20
Samy, Salma, Banawan, Karim, Azab, Mohamed, Rizk, Mohamed.  2021.  Smart Blockchain-based Control-data Protection Framework for Trustworthy Smart Grid Operations. 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0963—0969.
The critical nature of smart grids (SGs) attracts various network attacks and malicious manipulations. Existent SG solutions are less capable of ensuring secure and trustworthy operation. This is due to the large-scale nature of SGs and reliance on network protocols for trust management. A particular example of such severe attacks is the false data injection (FDI). FDI refers to a network attack, where meters' measurements are manipulated before being reported in such a way that the energy system takes flawed decisions. In this paper, we exploit the secure nature of blockchains to construct a data management framework based on public blockchain. Our framework enables trustworthy data storage, verification, and exchange between SG components and decision-makers. Our proposed system enables miners to invest their computational power to verify blockchain transactions in a fully distributed manner. The mining logic employs machine learning (ML) techniques to identify the locations of compromised meters in the network, which are responsible for generating FDI attacks. In return, miners receive virtual credit, which may be used to pay their electric bills. Our design circumvents single points of failure and intentional FDI attempts. Our numerical results compare the accuracy of three different ML-based mining logic techniques in two scenarios: focused and distributed FDI attacks for different attack levels. Finally, we proposed a majority-decision mining technique for the practical case of an unknown FDI attack level.
2022-03-22
Samy, Salma, Azab, Mohamed, Rizk, Mohamed.  2021.  Towards a Secured Blockchain-based Smart Grid. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :1066—1069.
The widespread utilization of smart grids is due to their flexibility to support the two-way flow of electricity and data. The critical nature of smart grids evokes traditional network attacks. Due to the advantages of blockchains in terms of ensuring trustworthiness and security, a significant body of literature has been recently developed to secure smart grid operations. We categorize the blockchain applications in smart grid into three categories: energy trading, infrastructure management, and smart-grid operations management. This paper provides an extensive survey of these works and the different ways to utilize blockchains in smart grid in general. We propose an abstract system to overcome a critical cyberattack; namely, the fake data injection, as previous works did not consider such an attack.