Biblio
The security issue of complex network systems, such as communication systems and power grids, has attracted increasing attention due to cascading failure threats. Many existing studies have investigated the robustness of complex networks against cascading failure from an attacker's perspective. However, most of them focus on the synchronous attack in which the network components under attack are removed synchronously rather than in a sequential fashion. Most recent pioneering work on sequential attack designs the attack strategies based on simple heuristics like degree and load information, which may ignore the inside functions of nodes. In the paper, we exploit a reinforcement learning-based sequential attack method to investigate the impact of different nodes on cascading failure. Besides, a candidate pool strategy is proposed to improve the performance of the reinforcement learning method. Simulation results on Barabási-Albert scale-free networks and real-world networks have demonstrated the superiority and effectiveness of the proposed method.