Visible to the public Biblio

Filters: Author is Swann, Matthew  [Clear All Filters]
2022-07-13
Swann, Matthew, Rose, Joseph, Bendiab, Gueltoum, Shiaeles, Stavros, Li, Fudong.  2021.  Open Source and Commercial Capture The Flag Cyber Security Learning Platforms - A Case Study. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :198—205.
The use of gamified learning platforms as a method of introducing cyber security education, training and awareness has risen greatly. With this rise, the availability of platforms to create, host or otherwise provide the challenges that make up the foundation of this education has also increased. In order to identify the best of these platforms, we need a method to compare their feature sets. In this paper, we compare related work on identifying the best platforms for a gamified cyber security learning platform as well as contemporary literature that describes the most needed feature sets for an ideal platform. We then use this to develop a metric for comparing these platforms, before then applying this metric to popular current platforms.
2022-04-13
Rose, Joseph R, Swann, Matthew, Bendiab, Gueltoum, Shiaeles, Stavros, Kolokotronis, Nicholas.  2021.  Intrusion Detection using Network Traffic Profiling and Machine Learning for IoT. 2021 IEEE 7th International Conference on Network Softwarization (NetSoft). :409–415.
The rapid increase in the use of IoT devices brings many benefits to the digital society, ranging from improved efficiency to higher productivity. However, the limited resources and the open nature of these devices make them vulnerable to various cyber threats. A single compromised device can have an impact on the whole network and lead to major security and physical damages. This paper explores the potential of using network profiling and machine learning to secure IoT against cyber attacks. The proposed anomaly-based intrusion detection solution dynamically and actively profiles and monitors all networked devices for the detection of IoT device tampering attempts as well as suspicious network transactions. Any deviation from the defined profile is considered to be an attack and is subject to further analysis. Raw traffic is also passed on to the machine learning classifier for examination and identification of potential attacks. Performance assessment of the proposed methodology is conducted on the Cyber-Trust testbed using normal and malicious network traffic. The experimental results show that the proposed anomaly detection system delivers promising results with an overall accuracy of 98.35% and 0.98% of false-positive alarms.