Visible to the public Biblio

Filters: Author is Malik, Navneet  [Clear All Filters]
2022-04-19
Kumar, Vipin, Malik, Navneet.  2021.  Dynamic Key Management Scheme for Clustered Sensor Networks with Node Addition Support. 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM). :102–107.
A sensor network is wireless with tiny nodes and widely used in various applications. To track the event and collect the data from a remote area or a hostile area sensor network is used. A WSN collects wirelessly connected tiny sensors with minimal resources like the battery, computation power, and memory. When a sensor collects data, it must be transferred to the control center through the gateway (Sink), and it must be transferred safely. For secure transfer of data in the network, the routing protocol must be safe and can use the cryptography method for authentication and confidentiality. An essential issue in WSN structure is the key management. WSN relies on the strength of the communicating devices, battery power, and sensor nodes to communicate in the wireless environment over a limited region. Due to energy and memory limitations, the construction of a fully functional network needs to be well arranged. Several techniques are available in the current literature for such key management techniques. Among the distribution of key over the network, sharing private and public keys is the most important. Network security is not an easy problem because of its limited resources, and these networks are deployed in unattended areas where they work without any human intervention. These networks are used to monitor buildings and airports, so security is always a major issue for these networks. In this paper, we proposed a dynamic key management scheme for the clustered sensor network that also supports the addition of a new node in the network later. Keys are dynamically generated and securely distributed to communication parties with the help of a cluster head. We verify the immunity of the scheme against various attacks like replay attack and node captured attacker. A simulation study was also done on energy consumption for key setup and refreshed the keys. Security analysis of scheme shows batter resiliency against node capture attack.