Biblio
Filters: Author is Lee, Youn Kyu [Clear All Filters]
A Measurement Study on Gray Channel-based Deepfake Detection. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :428–430.
.
2021. Deepfake detection techniques have been widely studied to resolve security issues. However, existing techniques mainly focused on RGB channel-based analysis, which still shows incomplete detection accuracy. In this paper, we validate the performance of Gray channel-based deepfake detection. To compare RGB channel-based analysis and Gray channel-based analysis in deepfake detection, we quantitatively measured the performance by using popular CNN models, deepfake datasets, and evaluation indicators. Our experimental results confirm that Gray channel-based deepfake detection outperforms RGB channel-based deepfake detection in terms of accuracy and analysis time.
A Study on Effective Use of BPM Information in Deepfake Detection. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :425–427.
.
2021. Recent developments in deepfake technology are increasing new security threats. To solve these issues, various detection methods have been proposed including the methods utilizing biological signals captured by R-PPG. However, existing methods have limitations in terms of detection accuracy and generalized performance. In this paper, we present our approach for R-PPG-based BPM (Beats Per Minute) analysis for effective deepfake detection. With the selected deepfake datasets, we performed (a) comparison and analysis of conditions for BPM processing, and (b) BPM extraction by dividing the face into 16 regions and comparison of BPM in each region. The results showed that our proposed BPM-related properties are effective in deepfake detection.