Visible to the public Biblio

Filters: Author is Ye, D.  [Clear All Filters]
2021-01-25
Zhang, T.-Y., Ye, D..  2020.  Distributed Secure Control Against Denial-of-Service Attacks in Cyber-Physical Systems Based on K-Connected Communication Topology. IEEE Transactions on Cybernetics. 50:3094–3103.
In this article, the security problem in cyber-physical systems (CPSs) against denial-of-service (DoS) attacks is studied from the perspectives of the designs of communication topology and distributed controller. To resist the DoS attacks, a new construction algorithm of the k-connected communication topology is developed based on the proposed necessary and sufficient criteria of the k-connected graph. Furthermore, combined with the k-connected topology, a distributed event-triggered controller is designed to guarantee the consensus of CPSs under mode-switching DoS (MSDoS) attacks. Different from the existing distributed control schemes, a new technology, that is, the extended Laplacian matrix method, is combined to design the distributed controller independent on the knowledge and the dwell time of DoS attack modes. Finally, the simulation example illustrates the superiority and effectiveness of the proposed construction algorithm and a distributed control scheme.
2017-02-27
Geng, J., Ye, D., Luo, P..  2015.  Forecasting severity of software vulnerability using grey model GM(1,1). 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :344–348.

Vulnerabilities usually represents the risk level of software, and it is of high value to forecast vulnerabilities so as to evaluate the security level of software. Current researches mainly focus on predicting the number of vulnerabilities or the occurrence time of vulnerabilities, however, to our best knowledge, there are no other researches focusing on the prediction of vulnerabilities' severity, which we think is an important aspect reflecting vulnerabilities and software security. To compensate for this deficiency, we borrows the grey model GM(1,1) from grey system theory to forecast the severity of vulnerabilities. The experiment is carried on the real data collected from CVE and proves the feasibility of our predicting method.