Visible to the public Biblio

Filters: Author is Khalid, Faiq  [Clear All Filters]
2022-10-03
Alrahis, Lilas, Patnaik, Satwik, Khalid, Faiq, Hanif, Muhammad Abdullah, Saleh, Hani, Shafique, Muhammad, Sinanoglu, Ozgur.  2021.  GNNUnlock: Graph Neural Networks-based Oracle-less Unlocking Scheme for Provably Secure Logic Locking. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). :780–785.
Logic locking is a holistic design-for-trust technique that aims to protect the design intellectual property (IP) from untrustworthy entities throughout the supply chain. Functional and structural analysis-based attacks successfully circumvent state-of-the-art, provably secure logic locking (PSLL) techniques. However, such attacks are not holistic and target specific implementations of PSLL. Automating the detection and subsequent removal of protection logic added by PSLL while accounting for all possible variations is an open research problem. In this paper, we propose GNNUnlock, the first-of-its-kind oracle-less machine learning-based attack on PSLL that can identify any desired protection logic without focusing on a specific syntactic topology. The key is to leverage a well-trained graph neural network (GNN) to identify all the gates in a given locked netlist that belong to the targeted protection logic, without requiring an oracle. This approach fits perfectly with the targeted problem since a circuit is a graph with an inherent structure and the protection logic is a sub-graph of nodes (gates) with specific and common characteristics. GNNs are powerful in capturing the nodes' neighborhood properties, facilitating the detection of the protection logic. To rectify any misclassifications induced by the GNN, we additionally propose a connectivity analysis-based post-processing algorithm to successfully remove the predicted protection logic, thereby retrieving the original design. Our extensive experimental evaluation demonstrates that GNNUnlock is 99.24% - 100% successful in breaking various benchmarks locked using stripped-functionality logic locking [1], tenacious and traceless logic locking [2], and Anti-SAT [3]. Our proposed post-processing enhances the detection accuracy, reaching 100% for all of our tested locked benchmarks. Analysis of the results corroborates that GNNUnlock is powerful enough to break the considered schemes under different parameters, synthesis settings, and technology nodes. The evaluation further shows that GNNUnlock successfully breaks corner cases where even the most advanced state-of-the-art attacks [4], [5] fail. We also open source our attack framework [6].
2022-04-20
Ratasich, Denise, Khalid, Faiq, Geissler, Florian, Grosu, Radu, Shafique, Muhammad, Bartocci, Ezio.  2019.  A Roadmap Toward the Resilient Internet of Things for Cyber-Physical Systems. IEEE Access. 7:13260–13283.
The Internet of Things (IoT) is a ubiquitous system connecting many different devices - the things - which can be accessed from the distance. The cyber-physical systems (CPSs) monitor and control the things from the distance. As a result, the concepts of dependability and security get deeply intertwined. The increasing level of dynamicity, heterogeneity, and complexity adds to the system's vulnerability, and challenges its ability to react to faults. This paper summarizes the state of the art of existing work on anomaly detection, fault-tolerance, and self-healing, and adds a number of other methods applicable to achieve resilience in an IoT. We particularly focus on non-intrusive methods ensuring data integrity in the network. Furthermore, this paper presents the main challenges in building a resilient IoT for the CPS, which is crucial in the era of smart CPS with enhanced connectivity (an excellent example of such a system is connected autonomous vehicles). It further summarizes our solutions, work-in-progress and future work to this topic to enable ``Trustworthy IoT for CPS''. Finally, this framework is illustrated on a selected use case: a smart sensor infrastructure in the transport domain.
Conference Name: IEEE Access