Visible to the public Biblio

Filters: Author is Yang, Ge  [Clear All Filters]
2022-04-26
Yang, Ge, Wang, Shaowei, Wang, Haijie.  2021.  Federated Learning with Personalized Local Differential Privacy. 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS). :484–489.

Recently, federated learning (FL), as an advanced and practical solution, has been applied to deal with privacy-preserving issues in distributed multi-party federated modeling. However, most existing FL methods focus on the same privacy-preserving budget while ignoring various privacy requirements of participants. In this paper, we for the first time propose an algorithm (PLU-FedOA) to optimize the deep neural network of horizontal FL with personalized local differential privacy. For such considerations, we design two approaches: PLU, which allows clients to upload local updates under differential privacy-preserving of personally selected privacy level, and FedOA, which helps the server aggregates local parameters with optimized weight in mixed privacy-preserving scenarios. Moreover, we theoretically analyze the effect on privacy and optimization of our approaches. Finally, we verify PLU-FedOA on real-world datasets.