Visible to the public Biblio

Filters: Author is Ahmed, Homam  [Clear All Filters]
2022-05-05
Ahmed, Homam, Jie, Zhu, Usman, Muhammad.  2021.  Lightweight Fire Detection System Using Hybrid Edge-Cloud Computing. 2021 IEEE 4th International Conference on Computer and Communication Engineering Technology (CCET). :153—157.
The emergence of the 5G network has boosted the advancements in the field of the internet of things (IoT) and edge/cloud computing. We present a novel architecture to detect fire in indoor and outdoor environments, dubbed as EAC-FD, an abbreviation of edge and cloud-based fire detection. Compared with existing frameworks, ours is lightweight, secure, cost-effective, and reliable. It utilizes a hybrid edge and cloud computing framework with Intel neural compute stick 2 (NCS2) accelerator is for inference in real-time with Raspberry Pi 3B as an edge device. Our fire detection model runs on the edge device while also capable of cloud computing for more robust analysis making it a secure system. We compare different versions of SSD-MobileNet architectures with ours suitable for low-end devices. The fire detection model shows a good balance between computational cost frames per second (FPS) and accuracy.