Visible to the public Biblio

Filters: Author is Saravanan, M  [Clear All Filters]
2022-05-06
Saravanan, M, Pratap Sircar, Rana.  2021.  Quantum Evolutionary Algorithm for Scheduling Resources in Virtualized 5G RAN Environment. 2021 IEEE 4th 5G World Forum (5GWF). :111–116.
Radio is the most important part of any wireless network. Radio Access Network (RAN) has been virtualized and disaggregated into different functions whose location is best defined by the requirements and economics of the use case. This Virtualized RAN (vRAN) architecture separates network functions from the underlying hardware and so 5G can leverage virtualization of the RAN to implement these functions. The easy expandability and manageability of the vRAN support the expansion of the network capacity and deployment of new features and algorithms for streamlining resource usage. In this paper, we try to address the problem of scheduling 5G vRAN with mid-haul network capacity constraints as a combinatorial optimization problem. We transformed it to a Quadratic Unconstrained Binary Optimization (QUBO) problem by using a newly proposed quantum-based algorithm and compared our implementation with existing classical algorithms. This work has demonstrated the advantage of quantum computers in solving a particular optimization problem in the Telecommunication domain and paves the way for solving critical real-world problems using quantum computers faster and better.