Biblio
Filters: Author is Pendleton, Marcus [Clear All Filters]
Auditing a Software-Defined Cross Domain Solution Architecture. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :96—103.
.
2022. In the context of cybersecurity systems, trust is the firm belief that a system will behave as expected. Trustworthiness is the proven property of a system that is worthy of trust. Therefore, trust is ephemeral, i.e. trust can be broken; trustworthiness is perpetual, i.e. trustworthiness is verified and cannot be broken. The gap between these two concepts is one which is, alarmingly, often overlooked. In fact, the pressure to meet with the pace of operations for mission critical cross domain solution (CDS) development has resulted in a status quo of high-risk, ad hoc solutions. Trustworthiness, proven through formal verification, should be an essential property in any hardware and/or software security system. We have shown, in "vCDS: A Virtualized Cross Domain Solution Architecture", that developing a formally verified CDS is possible. virtual CDS (vCDS) additionally comes with security guarantees, i.e. confidentiality, integrity, and availability, through the use of a formally verified trusted computing base (TCB). In order for a system, defined by an architecture description language (ADL), to be considered trustworthy, the implemented security configuration, i.e. access control and data protection models, must be verified correct. In this paper we present the first and only security auditing tool which seeks to verify the security configuration of a CDS architecture defined through ADL description. This tool is useful in mitigating the risk of existing solutions by ensuring proper security enforcement. Furthermore, when coupled with the agile nature of vCDS, this tool significantly increases the pace of system delivery.
vCDS: A Virtualized Cross Domain Solution Architecture. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :61–68.
.
2021. With the paradigm shift to cloud-based operations, reliable and secure access to and transfer of data between differing security domains has never been more essential. A Cross Domain Solution (CDS) is a guarded interface which serves to execute the secure access and/or transfer of data between isolated and/or differing security domains defined by an administrative security policy. Cross domain security requires trustworthiness at the confluence of the hardware and software components which implement a security policy. Security components must be relied upon to defend against widely encompassing threats – consider insider threats and nation state threat actors which can be both onsite and offsite threat actors – to information assurance. Current implementations of CDS systems use suboptimal Trusted Computing Bases (TCB) without any formal verification proofs, confirming the gap between blind trust and trustworthiness. Moreover, most CDSs are exclusively operated by Department of Defense agencies and are not readily available to the commercial sectors, nor are they available for independent security verification. Still, more CDSs are only usable in physically isolated environments such as Sensitive Compartmented Information Facilities and are inconsistent with the paradigm shift to cloud environments. Our purpose is to address the question of how trustworthiness can be implemented in a remotely deployable CDS that also supports availability and accessibility to all sectors. In this paper, we present a novel CDS system architecture which is the first to use a formally verified TCB. Additionally, our CDS model is the first of its kind to utilize a computation-isolation approach which allows our CDS to be remotely deployable for use in cloud-based solutions.