Visible to the public Biblio

Filters: Author is Liu, Tianyu  [Clear All Filters]
2022-08-26
Liu, Tianyu, Di, Boya, Wang, Shupeng, Song, Lingyang.  2021.  A Privacy-Preserving Incentive Mechanism for Federated Cloud-Edge Learning. 2021 IEEE Global Communications Conference (GLOBECOM). :1—6.
The federated learning scheme enhances the privacy preservation through avoiding the private data uploading in cloud-edge computing. However, the attacks against the uploaded model updates still cause private data leakage which demotivates the privacy-sensitive participating edge devices. Facing this issue, we aim to design a privacy-preserving incentive mechanism for the federated cloud-edge learning (PFCEL) system such that 1) the edge devices are motivated to actively contribute to the updated model uploading, 2) a trade-off between the private data leakage and the model accuracy is achieved. We formulate the incentive design problem as a three-layer Stackelberg game, where the server-device interaction is further formulated as a contract design problem. Extensive numerical evaluations demonstrate the effectiveness of our designed mechanism in terms of privacy preservation and system utility.
2022-06-08
Jia, Xianfeng, Liu, Tianyu, Sun, Chunhui, Wu, Zhi.  2021.  Analysis on the Application of Cryptographic Technology in the Communication Security of Intelligent Networked Vehicles. 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE). :423–427.

Intelligent networked vehicles are rapidly developing in intelligence and networking. The communication architecture is becoming more complex, external interfaces are richer, and data types are more complex. Different from the information security of the traditional Internet of Things, the scenarios that need to be met for the security of the Internet of Vehicles are more diverse and the security needs to be more stable. Based on the security technology of traditional Internet of Things, password application is the main protection method to ensure the privacy and non-repudiation of data communication. This article mainly elaborates the application of security protection methods using password-related protection technologies in car-side scenarios and summarizes the security protection recommendations of contemporary connected vehicles in combination with the secure communication architecture of the Internet of Vehicles.