Biblio
Filters: Author is Deshmukh, Monika S. [Clear All Filters]
Intrusion Detection System (DBN-IDS) for IoT using Optimization Enabled Deep Belief Neural Network. 2021 5th International Conference on Information Systems and Computer Networks (ISCON). :1–4.
.
2021. In the era of Internet of Things (IoT), the connection links are established from devices easily, which is vulnerable to insecure attacks from intruders, hence intrusion detection system in IoT is the need of an hour. One of the important thing for any organization is securing the confidential information and data from outside attacks as well as unauthorized access. There are many attempts made by the researchers to develop the strong intrusion detection system having high accuracy. These systems suffer from many disadvantages like unacceptable accuracy rates including high False Positive Rate (FPR) and high False Negative Rate (FNR), more execution time and failure rate. More of these system models are developed by using traditional machine learning techniques, which have performance limitations in terms of accuracy and timeliness both. These limitations can be overcome by using the deep learning techniques. Deep learning techniques have the capability to generate highly accurate results and are fault tolerant. Here, the intrusion detection model for IoT is designed by using the Taylor-Spider Monkey optimization (Taylor-SMO) which will be developed to train the Deep belief neural network (DBN) towards achieving an accurate intrusion detection model. The deep learning accuracy gets increased with increasing number of training data samples and testing data samples. The optimization based algorithm for training DBN helps to reduce the FPR and FNR in intrusion detection. The system will be implemented by using the NSL KDD dataset. Also, this model will be trained by using the samples from this dataset, before which feature extraction will be applied and only relevant set of attributes will be selected for model development. This approach can lead to better and satisfactory results in intrusion detection.