Biblio
This paper presents a supervisory control and data acquisition (SCADA) testbed recently built at the University of New Orleans. The testbed consists of models of three industrial physical processes: a gas pipeline, a power transmission and distribution system, and a wastewater treatment plant–these systems are fully-functional and implemented at small-scale. It utilizes real-world industrial equipment such as transformers, programmable logic controllers (PLC), aerators, etc., bringing it closer to modeling real-world SCADA systems. Sensors, actuators, and PLCs are deployed at each physical process system for local control and monitoring, and the PLCs are also connected to a computer running human-machine interface (HMI) software for monitoring the status of the physical processes. The testbed is a useful resource for cybersecurity research, forensic research, and education on different aspects of SCADA systems such as PLC programming, protocol analysis, and demonstration of cyber attacks.
End users are prone to insecure cyber behavior that may lead them to compromise the integrity, availability or confidentiality of their computer systems. For instance, replying to a phishing email may compromise an end user's login credentials. Identifying tendency toward insecure cyber behavior is critically important to improve cyber security posture and thesis of this paper is that the susceptibility of end-users to be a victim of a cyber-attack may be predicted using personality traits such as trait anxiety and callousness. This paper presents an easily configurable, script-based software tool to explore the relationships between the personality traits and insecure cyber behaviors of end users. The software utilizes well-established cognitive methods (such as dot probe) to identify a number of personality traits for a user and further allows researchers to design and conduct experiments through customizable scripting to study the endusers' insecure cyber behaviors. The software also collects fine-grained data on users for analysis.