Visible to the public Biblio

Filters: Author is Alkawaz, Mohammed Hazim  [Clear All Filters]
2023-02-03
Alkawaz, Mohammed Hazim, Joanne Steven, Stephanie, Mohammad, Omar Farook, Gapar Md Johar, Md.  2022.  Identification and Analysis of Phishing Website based on Machine Learning Methods. 2022 IEEE 12th Symposium on Computer Applications & Industrial Electronics (ISCAIE). :246–251.
People are increasingly sharing their details online as internet usage grows. Therefore, fraudsters have access to a massive amount of information and financial activities. The attackers create web pages that seem like reputable sites and transmit the malevolent content to victims to get them to provide subtle information. Prevailing phishing security measures are inadequate for detecting new phishing assaults. To accomplish this aim, objective to meet for this research is to analyses and compare phishing website and legitimate by analyzing the data collected from open-source platforms through a survey. Another objective for this research is to propose a method to detect fake sites using Decision Tree and Random Forest approaches. Microsoft Form has been utilized to carry out the survey with 30 participants. Majority of the participants have poor awareness and phishing attack and does not obverse the features of interface before accessing the search browser. With the data collection, this survey supports the purpose of identifying the best phishing website detection where Decision Tree and Random Forest were trained and tested. In achieving high number of feature importance detection and accuracy rate, the result demonstrates that Random Forest has the best performance in phishing website detection compared to Decision Tree.
2022-07-14
Ismail, Safwati, Alkawaz, Mohammed Hazim, Kumar, Alvin Ebenazer.  2021.  Quick Response Code Validation and Phishing Detection Tool. 2021 IEEE 11th IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE). :261–266.
A Quick Response (QR) Code is a type of barcode that can be read by the digital devices and which stores the information in a square-shaped. The QR Code readers can extract data from the patterns which are presented in the QR Code matrix. A QR Code can be acting as an attack vector that can harm indirectly. In such case a QR Code can carry malicious or phishing URLs and redirect users to a site which is well conceived by the attacker and pretends to be an authorized one. Once the QR Code is decoded the commands are triggered and executed, causing damage to information, operating system and other possible sequence the attacker expects to gain. In this paper, a new model for QR Code authentication and phishing detection has been presented. The proposed model will be able to detect the phishing and malicious URLs in the process of the QR Code validation as well as to prevent the user from validating it. The development of this application will help to prevent users from being tricked by the harmful QR Codes.