Visible to the public Biblio

Filters: Author is Zhang, Yongqiang  [Clear All Filters]
2022-07-14
Cheng, Xin, Zhu, Haowen, Xing, Xinyi, Zhang, Yunfeng, Zhang, Yongqiang, Xie, Guangjun, Zhang, Zhang.  2021.  A Feedback Architecture of High Speed True Random Number Generator based on Ring Oscillator. 2021 IEEE Asian Solid-State Circuits Conference (A-SSCC). :1—3.
True random number generators (TRNG) are widely used to generate encryption keys in information security systems [1]–[2]. In TRNG, entropy source is a critical module who provides the source of randomness of output bit stream. The unavoidable electrical noise in circuit becomes an ideal entropy source due to its unpredictability. Among the methods of capturing electrical noise, ring oscillator-based entropy source makes the TRNG most robust to deterministic noise and 1/f noise which means the strongest anti-interference capability, so it is simple in structure and easy to integrate [3]. Thus, great research attention has focused on ring oscillator-based TRNGs [3] –[7]. In [4], a high-speed TRNG with 100Mbps output bit rate was proposed, but it took up too much power and area. A TRNG based on tetrahedral ring oscillator was proposed in [5]. Its power consumption was very low but the output bit rate was also very low. A ring oscillator-based TRNG with low output bit rate but high power was proposed in [7]. In a word, none of the above architectures achieve an appropriate compromise between bit rate and power consumption. This work presents a new feedback architecture of TRNG based on tetrahedral ring oscillator. The output random bit stream generates a relative random control voltage that acts on the transmission gates in oscillator through a feedback loop, thus increasing phase jitter of the oscillator and improving output bit rate. Furthermore, an XOR chain-based post-processing unit is added to eliminate the statistical deviations and correlations between raw bits.