Visible to the public Biblio

Filters: Author is Johora, Fatema Tuj  [Clear All Filters]
2022-07-15
Jony, Mehdi Hassan, Johora, Fatema Tuj, Katha, Jannatul Ferdous.  2021.  A Robust and Efficient Numeric Approach for Relational Database Watermarking. 2021 3rd International Conference on Sustainable Technologies for Industry 4.0 (STI). :1—6.
Sharing relational databases on the Internet creates the need to protect these databases. Its output in substantial losses to the data storing systems because of unauthorized access to information that could lose novelty. The research associations use the research databases to mine new information about the research works of the relational databases that are available for free. It is a great challenge to maintain authenticity because these databases are vulnerable to security issues. Watermarking is a candidate solution that fully protects databases shared with the receiver. The protection of relational database ownership that may continue to evolve against the various aquatic mechanisms shared with the recipient that arouses appetite for attacks and must continue to evolve so that they can have database knowledge to support their decision-making system is effective. The relational database based onVirtual private key Watermarking using numeric attribute) involves embedding the same watermark in the same properties in different places in the same place. Therefore, data attackers cannot remove watermarks from data. The proposed strategy is to work by inserting watermark bits in such a way that it causes minimal distortion in the data and the data usability must remain intact after the data is watermarked. The proposed strategy is to work by inserting watermark bits in such a way that it causes minimal distortion in the data and the ability to use the data after watermarking the data must remain intact. The existence of a primary key is the main feature or compulsory item for most of the strategies. Our method provides solutions no primary key feature where the integrating search system of the database remains intact after watermarking distortion.