Visible to the public Biblio

Filters: Author is Chen, Yuling  [Clear All Filters]
2023-05-19
Zhang, Lingyun, Chen, Yuling, Qian, Xiaobin.  2022.  Data Confirmation Scheme based on Auditable CP-ABE. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :439—443.
Ensuring data rights, openness and transaction flow is important in today’s digital economy. Few scholars have studied in the area of data confirmation, it is only with the development of blockchain that it has started to be taken seriously. However, blockchain has open and transparent natures, so there exists a certain probability of exposing the privacy of data owners. Therefore, in this paper we propose a new measure of data confirmation based on Ciphertext-Policy Attribute-Base Encryption(CP-ABE). The information with unique identification of the data owner is embedded in the ciphertext of CP-ABE by paillier homomorphic encryption, and the data can have multiple sharers. No one has access to the plaintext during the whole confirmation process, which reduces the risk of source data leakage.
2023-02-17
Yang, Kaicheng, Wu, Yongtang, Chen, Yuling.  2022.  A Blockchain-based Scalable Electronic Contract Signing System. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :343–348.
As the COVID-19 continues to spread globally, more and more companies are transforming into remote online offices, leading to the expansion of electronic signatures. However, the existing electronic signatures platform has the problem of data-centered management. The system is subject to data loss, tampering, and leakage when an attack from outside or inside occurs. In response to the above problems, this paper designs an electronic signature solution and implements a prototype system based on the consortium blockchain. The solution divides the contract signing process into four states: contract upload, initiation signing, verification signing, and confirm signing. The signing process is mapped with the blockchain-linked data. Users initiate the signature transaction by signing the uploaded contract's hash. The sign state transition is triggered when the transaction is uploaded to the blockchain under the consensus mechanism and the smart contract control, which effectively ensures the integrity of the electronic contract and the non-repudiation of the electronic signature. Finally, the blockchain performance test shows that the system can be applied to the business scenario of contract signing.
2022-07-15
Luo, Yun, Chen, Yuling, Li, Tao, Wang, Yilei, Yang, Yixian.  2021.  Using information entropy to analyze secure multi-party computation protocol. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :312—318.

Secure multi-party computation(SMPC) is an important research field in cryptography, secure multi-party computation has a wide range of applications in practice. Accordingly, information security issues have arisen. Aiming at security issues in Secure multi-party computation, we consider that semi-honest participants have malicious operations such as collusion in the process of information interaction, gaining an information advantage over honest parties through collusion which leads to deviations in the security of the protocol. To solve this problem, we combine information entropy to propose an n-round information exchange protocol, in which each participant broadcasts a relevant information value in each round without revealing additional information. Through the change of the uncertainty of the correct result value in each round of interactive information, each participant cannot determine the correct result value before the end of the protocol. Security analysis shows that our protocol guarantees the security of the output obtained by the participants after the completion of the protocol.