Visible to the public Biblio

Filters: Author is Bissyandè, Tegawende F.  [Clear All Filters]
2023-02-02
Samhi, Jordan, Gao, Jun, Daoudi, Nadia, Graux, Pierre, Hoyez, Henri, Sun, Xiaoyu, Allix, Kevin, Bissyandè, Tegawende F., Klein, Jacques.  2022.  JuCify: A Step Towards Android Code Unification for Enhanced Static Analysis. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :1232–1244.
Native code is now commonplace within Android app packages where it co-exists and interacts with Dex bytecode through the Java Native Interface to deliver rich app functionalities. Yet, state-of-the-art static analysis approaches have mostly overlooked the presence of such native code, which, however, may implement some key sensitive, or even malicious, parts of the app behavior. This limitation of the state of the art is a severe threat to validity in a large range of static analyses that do not have a complete view of the executable code in apps. To address this issue, we propose a new advance in the ambitious research direction of building a unified model of all code in Android apps. The JUCIFY approach presented in this paper is a significant step towards such a model, where we extract and merge call graphs of native code and bytecode to make the final model readily-usable by a common Android analysis framework: in our implementation, JUCIFY builds on the Soot internal intermediate representation. We performed empirical investigations to highlight how, without the unified model, a significant amount of Java methods called from the native code are “unreachable” in apps' callgraphs, both in goodware and malware. Using JUCIFY, we were able to enable static analyzers to reveal cases where malware relied on native code to hide invocation of payment library code or of other sensitive code in the Android framework. Additionally, JUCIFY'S model enables state-of-the-art tools to achieve better precision and recall in detecting data leaks through native code. Finally, we show that by using JUCIFY we can find sensitive data leaks that pass through native code.
2022-08-12
Liu, Kui, Koyuncu, Anil, Kim, Dongsun, Bissyandè, Tegawende F..  2019.  AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations. 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). :1–12.
Fix pattern-based patch generation is a promising direction in Automated Program Repair (APR). Notably, it has been demonstrated to produce more acceptable and correct patches than the patches obtained with mutation operators through genetic programming. The performance of pattern-based APR systems, however, depends on the fix ingredients mined from fix changes in development histories. Unfortunately, collecting a reliable set of bug fixes in repositories can be challenging. In this paper, we propose to investigate the possibility in an APR scenario of leveraging code changes that address violations by static bug detection tools. To that end, we build the AVATAR APR system, which exploits fix patterns of static analysis violations as ingredients for patch generation. Evaluated on the Defects4J benchmark, we show that, assuming a perfect localization of faults, AVATAR can generate correct patches to fix 34/39 bugs. We further find that AVATAR yields performance metrics that are comparable to that of the closely-related approaches in the literature. While AVATAR outperforms many of the state-of-the-art pattern-based APR systems, it is mostly complementary to current approaches. Overall, our study highlights the relevance of static bug finding tools as indirect contributors of fix ingredients for addressing code defects identified with functional test cases.