Visible to the public Biblio

Filters: Author is Sen, Ömer  [Clear All Filters]
2023-01-20
Sen, Ömer, Eze, Chijioke, Ulbig, Andreas, Monti, Antonello.  2022.  On Holistic Multi-Step Cyberattack Detection via a Graph-based Correlation Approach. 2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :380–386.
While digitization of distribution grids through information and communications technology brings numerous benefits, it also increases the grid's vulnerability to serious cyber attacks. Unlike conventional systems, attacks on many industrial control systems such as power grids often occur in multiple stages, with the attacker taking several steps at once to achieve its goal. Detection mechanisms with situational awareness are needed to detect orchestrated attack steps as part of a coherent attack campaign. To provide a foundation for detection and prevention of such attacks, this paper addresses the detection of multi-stage cyber attacks with the aid of a graph-based cyber intelligence database and alert correlation approach. Specifically, we propose an approach to detect multi-stage attacks by lever-aging heterogeneous data to form a knowledge base and employ a model-based correlation approach on the generated alerts to identify multi-stage cyber attack sequences taking place in the network. We investigate the detection quality of the proposed approach by using a case study of a multi-stage cyber attack campaign in a future-orientated power grid pilot.
2022-08-12
Sen, Ömer, Van Der Veldc, Dennis, Linnartz, Philipp, Hacker, Immanuel, Henze, Martin, Andres, Michael, Ulbig, Andreas.  2021.  Investigating Man-in-the-Middle-based False Data Injection in a Smart Grid Laboratory Environment. 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). :01—06.
With the increasing use of information and communication technology in electrical power grids, the security of energy supply is increasingly threatened by cyber-attacks. Traditional cyber-security measures, such as firewalls or intrusion detection/prevention systems, can be used as mitigation and prevention measures, but their effective use requires a deep understanding of the potential threat landscape and complex attack processes in energy information systems. Given the complexity and lack of detailed knowledge of coordinated, timed attacks in smart grid applications, we need information and insight into realistic attack scenarios in an appropriate and practical setting. In this paper, we present a man-in-the-middle-based attack scenario that intercepts process communication between control systems and field devices, employs false data injection techniques, and performs data corruption such as sending false commands to field devices. We demonstrate the applicability of the presented attack scenario in a physical smart grid laboratory environment and analyze the generated data under normal and attack conditions to extract domain-specific knowledge for detection mechanisms.