Biblio
The concept of Virtualized Network Functions (VNFs) aims to move Network Functions (NFs) out of dedicated hardware devices into software that runs on commodity hardware. A single NF consists of multiple VNF instances, usually running on virtual machines in a cloud infrastructure. The elastic management of an NF refers to load management across the VNF instances and the autonomic scaling of the number of VNF instances as the load on the NF changes. In this paper, we present EL-SEC, an autonomic framework to elastically manage security NFs on a virtualized infrastructure. As a use case, we deploy the Snort Intrusion Detection System as the NF on the GENI testbed. Concepts from control theory are used to create an Elastic Manager, which implements various controllers - in this paper, Proportional Integral (PI) and Proportional Integral Derivative (PID) - to direct traffic across the VNF Snort instances by monitoring the current load. RINA (a clean-slate Recursive InterNetwork Architecture) is used to build a distributed application that monitors load and collects Snort alerts, which are processed by the Elastic Manager and an Attack Analyzer, respectively. Software Defined Networking (SDN) is used to steer traffic through the VNF instances, and to block attack traffic. Our results show that virtualized security NFs can be easily deployed using our EL-SEC framework. With the help of real-time graphs, we show that PI and PID controllers can be used to easily scale the system, which leads to quicker detection of attacks.
Control theory and SDN (Software Defined Networking) are key components for NFV (Network Function Virtualization) deployment. However little has been done to use a control-theoretic approach for SDN and NFV management. In this paper, we describe a use case for NFV management using control theory and SDN. We use the management architecture of RINA (a clean-slate Recursive InterNetwork Architecture) to manage Virtual Network Function (VNF) instances over the GENI testbed. We deploy Snort, an Intrusion Detection System (IDS) as the VNF. Our network topology has source and destination hosts, multiple IDSes, an Open vSwitch (OVS) and an OpenFlow controller. A distributed management application running on RINA measures the state of the VNF instances and communicates this information to a Proportional Integral (PI) controller, which then provides load balancing information to the OpenFlow controller. The latter controller in turn updates traffic flow forwarding rules on the OVS switch, thus balancing load across the VNF instances. This paper demonstrates the benefits of using such a control-theoretic load balancing approach and the RINA management architecture in virtualized environments for NFV management. It also illustrates that GENI can easily support a wide range of SDN and NFV related experiments.