Biblio
Filters: Author is Chen, Tianyu [Clear All Filters]
An Empirical Study on the Quality of Entropy Sources in Linux Random Number Generator. ICC 2022 - IEEE International Conference on Communications. :559–564.
.
2022. Random numbers are essential for communications security, as they are widely employed as secret keys and other critical parameters of cryptographic algorithms. The Linux random number generator (LRNG) is the most popular open-source software-based random number generator (RNG). The security of LRNG is influenced by the overall design, especially the quality of entropy sources. Therefore, it is necessary to assess and quantify the quality of the entropy sources which contribute the main randomness to RNGs. In this paper, we perform an empirical study on the quality of entropy sources in LRNG with Linux kernel 5.6, and provide the following two findings. We first analyze two important entropy sources: jiffies and cycles, and propose a method to predict jiffies by cycles with high accuracy. The results indicate that, the jiffies can be correctly predicted thus contain almost no entropy in the condition of knowing cycles. The other important finding is the failure of interrupt cycles during system boot. The lower bits of cycles caused by interrupts contain little entropy, which is contrary to our traditional cognition that lower bits have more entropy. We believe these findings are of great significance to improve the efficiency and security of the RNG design on software platforms.
ISSN: 1938-1883
A Secure And High Concurrency SM2 Cooperative Signature Algorithm For Mobile Network. 2021 17th International Conference on Mobility, Sensing and Networking (MSN). :818—824.
.
2021. Mobile devices have been widely used to deploy security-sensitive applications such as mobile payments, mobile offices etc. SM2 digital signature technology is critical in these applications to provide the protection including identity authentication, data integrity, action non-repudiation. Since mobile devices are prone to being stolen or lost, several server-aided SM2 cooperative signature schemes have been proposed for the mobile scenario. However, existing solutions could not well fit the high-concurrency scenario which needs lightweight computation and communication complexity, especially for the server sides. In this paper, we propose a SM2 cooperative signature algorithm (SM2-CSA) for the high-concurrency scenario, which involves only one-time client-server interaction and one elliptic curve addition operation on the server side in the signing procedure. Theoretical analysis and practical tests shows that SM2-CSA can provide better computation and communication efficiency compared with existing schemes without compromising the security.