Visible to the public Biblio

Filters: Author is Hicks, M.  [Clear All Filters]
2019-09-26
Elliott, A. S., Ruef, A., Hicks, M., Tarditi, D..  2018.  Checked C: Making C Safe by Extension. 2018 IEEE Cybersecurity Development (SecDev). :53-60.

This paper presents Checked C, an extension to C designed to support spatial safety, implemented in Clang and LLVM. Checked C's design is distinguished by its focus on backward-compatibility, incremental conversion, developer control, and enabling highly performant code. Like past approaches to a safer C, Checked C employs a form of checked pointer whose accesses can be statically or dynamically verified. Performance evaluation on a set of standard benchmark programs shows overheads to be relatively low. More interestingly, Checked C introduces the notions of a checked region and bounds-safe interfaces.

2014-09-17
Chang Liu, Hicks, M., Shi, E..  2013.  Memory Trace Oblivious Program Execution. Computer Security Foundations Symposium (CSF), 2013 IEEE 26th. :51-65.

Cloud computing allows users to delegate data and computation to cloud service providers, at the cost of giving up physical control of their computing infrastructure. An attacker (e.g., insider) with physical access to the computing platform can perform various physical attacks, including probing memory buses and cold-boot style attacks. Previous work on secure (co-)processors provides hardware support for memory encryption and prevents direct leakage of sensitive data over the memory bus. However, an adversary snooping on the bus can still infer sensitive information from the memory access traces. Existing work on Oblivious RAM (ORAM) provides a solution for users to put all data in an ORAM; and accesses to an ORAM are obfuscated such that no information leaks through memory access traces. This method, however, incurs significant memory access overhead. This work is the first to leverage programming language techniques to offer efficient memory-trace oblivious program execution, while providing formal security guarantees. We formally define the notion of memory-trace obliviousness, and provide a type system for verifying that a program satisfies this property. We also describe a compiler that transforms a program into a structurally similar one that satisfies memory trace obliviousness. To achieve optimal efficiency, our compiler partitions variables into several small ORAM banks rather than one large one, without risking security. We use several example programs to demonstrate the efficiency gains our compiler achieves in comparison with the naive method of placing all variables in the same ORAM.