Visible to the public Biblio

Filters: Author is Yerima, Suleiman Y.  [Clear All Filters]
2023-02-17
Yerima, Suleiman Y., Bashar, Abul.  2022.  Semi-supervised novelty detection with one class SVM for SMS spam detection. 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). CFP2255E-ART:1–4.
The volume of SMS messages sent on a daily basis globally has continued to grow significantly over the past years. Hence, mobile phones are becoming increasingly vulnerable to SMS spam messages, thereby exposing users to the risk of fraud and theft of personal data. Filtering of messages to detect and eliminate SMS spam is now a critical functionality for which different types of machine learning approaches are still being explored. In this paper, we propose a system for detecting SMS spam using a semi-supervised novelty detection approach based on one class SVM classifier. The system is built as an anomaly detector that learns only from normal SMS messages thus enabling detection models to be implemented in the absence of labelled SMS spam training examples. We evaluated our proposed system using a benchmark dataset consisting of 747 SMS spam and 4827 non-spam messages. The results show that our proposed method out-performed the traditional supervised machine learning approaches based on binary, frequency or TF-IDF bag-of-words. The overall accuracy was 98% with 100% SMS spam detection rate and only around 3% false positive rate.
ISSN: 2157-8702
2022-10-13
Yerima, Suleiman Y., Alzaylaee, Mohammed K..  2020.  High Accuracy Phishing Detection Based on Convolutional Neural Networks. 2020 3rd International Conference on Computer Applications & Information Security (ICCAIS). :1—6.
The persistent growth in phishing and the rising volume of phishing websites has led to individuals and organizations worldwide becoming increasingly exposed to various cyber-attacks. Consequently, more effective phishing detection is required for improved cyber defence. Hence, in this paper we present a deep learning-based approach to enable high accuracy detection of phishing sites. The proposed approach utilizes convolutional neural networks (CNN) for high accuracy classification to distinguish genuine sites from phishing sites. We evaluate the models using a dataset obtained from 6,157 genuine and 4,898 phishing websites. Based on the results of extensive experiments, our CNN based models proved to be highly effective in detecting unknown phishing sites. Furthermore, the CNN based approach performed better than traditional machine learning classifiers evaluated on the same dataset, reaching 98.2% phishing detection rate with an F1-score of 0.976. The method presented in this paper compares favourably to the state-of-the art in deep learning based phishing website detection.