Visible to the public Biblio

Filters: Author is Caramancion, Kevin Matthe  [Clear All Filters]
2023-02-17
Caramancion, Kevin Matthe.  2022.  An Exploration of Mis/Disinformation in Audio Format Disseminated in Podcasts: Case Study of Spotify. 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1–6.
This paper examines audio-based social networking platforms and how their environments can affect the persistence of fake news and mis/disinformation in the whole information ecosystem. This is performed through an exploration of their features and how they compare to that of general-purpose multimodal platforms. A case study on Spotify and its recent issue on free speech and misinformation is the application area of this paper. As a supplementary, a demographic analysis of the current statistics of podcast streamers is outlined to give an overview of the target audience of possible deception attacks in the future. As for the conclusion, this paper confers a recommendation to policymakers and experts in preparing for future mis-affordance of the features in social environments that may unintentionally give the agents of mis/disinformation prowess to create and sow discord and deception.
Caramancion, Kevin Matthe.  2022.  Same Form, Different Payloads: A Comparative Vector Assessment of DDoS and Disinformation Attacks. 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1–6.
This paper offers a comparative vector assessment of DDoS and disinformation attacks. The assessed dimensions are as follows: (1) the threat agent, (2) attack vector, (3) target, (4) impact, and (5) defense. The results revealed that disinformation attacks, anchoring on astroturfs, resemble DDoS’s zombie computers in their method of amplification. Although DDoS affects several layers of the OSI model, disinformation attacks exclusively affect the application layer. Furthermore, even though their payloads and objectives are different, their vector paths and network designs are very similar. This paper, as its conclusion, strongly recommends the classification of disinformation as an actual cybersecurity threat to eliminate the inconsistencies in policies in social networking platforms. The intended target audiences of this paper are IT and cybersecurity experts, computer and information scientists, policymakers, legal and judicial scholars, and other professionals seeking references on this matter.