Visible to the public Biblio

Filters: Author is Abadi, Daniel J.  [Clear All Filters]
2017-08-18
DiScala, Michael, Abadi, Daniel J..  2016.  Automatic Generation of Normalized Relational Schemas from Nested Key-Value Data. Proceedings of the 2016 International Conference on Management of Data. :295–310.

Self-describing key-value data formats such as JSON are becoming increasingly popular as application developers choose to avoid the rigidity imposed by the relational model. Database systems designed for these self-describing formats, such as MongoDB, encourage users to use denormalized, heavily nested data models so that relationships across records and other schema information need not be predefined or standardized. Such data models contribute to long-term development complexity, as their lack of explicit entity and relationship tracking burdens new developers unfamiliar with the dataset. Furthermore, the large amount of data repetition present in such data layouts can introduce update anomalies and poor scan performance, which reduce both the quality and performance of analytics over the data. In this paper we present an algorithm that automatically transforms the denormalized, nested data commonly found in NoSQL systems into traditional relational data that can be stored in a standard RDBMS. This process includes a schema generation algorithm that discovers relationships across the attributes of the denormalized datasets in order to organize those attributes into relational tables. It further includes a matching algorithm that discovers sets of attributes that represent overlapping entities and merges those sets together. These algorithms reduce data repetition, allow the use of data analysis tools targeted at relational data, accelerate scan-intensive algorithms over the data, and help users gain a semantic understanding of complex, nested datasets.

2017-05-16
Ren, Kun, Diamond, Thaddeus, Abadi, Daniel J., Thomson, Alexander.  2016.  Low-Overhead Asynchronous Checkpointing in Main-Memory Database Systems. Proceedings of the 2016 International Conference on Management of Data. :1539–1551.

As it becomes increasingly common for transaction processing systems to operate on datasets that fit within the main memory of a single machine or a cluster of commodity machines, traditional mechanisms for guaranteeing transaction durability–-which typically involve synchronous log flushes–-incur increasingly unappealing costs to otherwise lightweight transactions. Many applications have turned to periodically checkpointing full database state. However, existing checkpointing methods–-even those which avoid freezing the storage layer–-often come with significant costs to operation throughput, end-to-end latency, and total memory usage. This paper presents Checkpointing Asynchronously using Logical Consistency (CALC), a lightweight, asynchronous technique for capturing database snapshots that does not require a physical point of consistency to create a checkpoint, and avoids conspicuous latency spikes incurred by other database snapshotting schemes. Our experiments show that CALC can capture frequent checkpoints across a variety of transactional workloads with extremely small cost to transactional throughput and low additional memory usage compared to other state-of-the-art checkpointing systems.

2017-03-07
DiScala, Michael, Abadi, Daniel J..  2016.  Automatic Generation of Normalized Relational Schemas from Nested Key-Value Data. Proceedings of the 2016 International Conference on Management of Data. :295–310.

Self-describing key-value data formats such as JSON are becoming increasingly popular as application developers choose to avoid the rigidity imposed by the relational model. Database systems designed for these self-describing formats, such as MongoDB, encourage users to use denormalized, heavily nested data models so that relationships across records and other schema information need not be predefined or standardized. Such data models contribute to long-term development complexity, as their lack of explicit entity and relationship tracking burdens new developers unfamiliar with the dataset. Furthermore, the large amount of data repetition present in such data layouts can introduce update anomalies and poor scan performance, which reduce both the quality and performance of analytics over the data. In this paper we present an algorithm that automatically transforms the denormalized, nested data commonly found in NoSQL systems into traditional relational data that can be stored in a standard RDBMS. This process includes a schema generation algorithm that discovers relationships across the attributes of the denormalized datasets in order to organize those attributes into relational tables. It further includes a matching algorithm that discovers sets of attributes that represent overlapping entities and merges those sets together. These algorithms reduce data repetition, allow the use of data analysis tools targeted at relational data, accelerate scan-intensive algorithms over the data, and help users gain a semantic understanding of complex, nested datasets.