Visible to the public Biblio

Filters: Author is Tsiropoulou, Eirini Eleni  [Clear All Filters]
2023-03-17
Irtija, Nafis, Tsiropoulou, Eirini Eleni, Minwalla, Cyrus, Plusquellic, Jim.  2022.  True Random Number Generation with the Shift-register Reconvergent-Fanout (SiRF) PUF. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :101–104.
True Random Number Generator (TRNG) is an important hardware security primitive for system security. TRNGs are capable of providing random bits for initialization vectors in encryption engines, for padding and nonces in authentication protocols and for seeds to pseudo random number generators (PRNG). A TRNG needs to meet the same statistical quality standards as a physical unclonable function (PUF) with regard to randomness and uniqueness, and therefore one can envision a unified architecture for both functions. In this paper, we investigate a FPGA implementation of a TRNG using the Shift-register Reconvergent-Fanout (SiRF) PUF. The SiRF PUF measures path delays as a source of entropy within a engineered logic gate netlist. The delays are measured at high precision using a time-to-digital converter, and then processed into a random bitstring using a series of linear-time mathematical operations. The SiRF PUF algorithm that is used for key generation is reused for the TRNG, with simplifications that improve the bit generation rate of the algorithm. This enables the TRNG to leverage both fixed PUF-based entropy and random noise sources, and makes the TRNG resilient to temperature-voltage attacks. TRNG bitstrings generated from a programmable logic implementation of the SiRF PUF-TRNG on a set of FPGAs are evaluated using statistical testing tools.