Visible to the public Biblio

Filters: Author is Sharma, P.  [Clear All Filters]
2021-03-16
Sharma, P., Nair, J., Singh, R..  2020.  Adaptive Flow-Level Scheduling for the IoT MAC. 2020 International Conference on COMmunication Systems NETworkS (COMSNETS). :515—518.

Over the past decade, distributed CSMA, which forms the basis for WiFi, has been deployed ubiquitously to provide seamless and high-speed mobile internet access. However, distributed CSMA might not be ideal for future IoT/M2M applications, where the density of connected devices/sensors/controllers is expected to be orders of magnitude higher than that in present wireless networks. In such high-density networks, the overhead associated with completely distributed MAC protocols will become a bottleneck. Moreover, IoT communications are likely to have strict QoS requirements, for which the `best-effort' scheduling by present WiFi networks may be unsuitable. This calls for a clean-slate redesign of the wireless MAC taking into account the requirements for future IoT/M2M networks. In this paper, we propose a reservation-based (for minimal overhead) wireless MAC designed specifically with IoT/M2M applications in mind.

2018-05-01
Arafin, M. T., Stanley, A., Sharma, P..  2017.  Hardware-Based Anti-Counterfeiting Techniques for Safeguarding Supply Chain Integrity. 2017 IEEE International Symposium on Circuits and Systems (ISCAS). :1–4.
Counterfeit integrated circuits (ICs) and systems have emerged as a menace to the supply chain of electronic goods and products. Simple physical inspection for counterfeit detection, basic intellectual property (IP) laws, and simple protection measures are becoming ineffective against advanced reverse engineering and counterfeiting practices. As a result, hardware security-based techniques have emerged as promising solutions for combating counterfeiting, reverse engineering, and IP theft. However, these solutions have their own merits and shortcomings, and therefore, these options must be carefully studied. In this work, we present a comparative overview of available hardware security solutions to fight against IC counterfeiting. We provide a detailed comparison of the techniques in terms of integration effort, deployability, and security matrices that would assist a system designer to adopt any one of these security measures for safeguarding the product supply chain against counterfeiting and IP theft.
2017-11-13
Sharma, P., Patel, D., Shah, D., Shukal, D..  2016.  Image security using Arnold method in tetrolet domain. 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC). :312–315.

The image contains a lot of visual as well as hidden information. Both, information must be secured at the time of transmission. With this motivation, a scheme is proposed based on encryption in tetrolet domain. For encryption, an iterative based Arnold transform is used in proposed methodology. The images are highly textured, which contains the authenticity of the image. For that, decryption process is performed in this way so that maximum, the edges and textures should be recovered, effectively. The suggested method has been tested on standard images and results obtained after applying suggested method are significant. A comparison is also performed with some standard existing methods to measure the effectiveness of the suggested method.

2017-03-07
Gupta, M. K., Govil, M. C., Singh, G., Sharma, P..  2015.  XSSDM: Towards detection and mitigation of cross-site scripting vulnerabilities in web applications. 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :2010–2015.

With the growth of the Internet, web applications are becoming very popular in the user communities. However, the presence of security vulnerabilities in the source code of these applications is raising cyber crime rate rapidly. It is required to detect and mitigate these vulnerabilities before their exploitation in the execution environment. Recently, Open Web Application Security Project (OWASP) and Common Vulnerabilities and Exposures (CWE) reported Cross-Site Scripting (XSS) as one of the most serious vulnerabilities in the web applications. Though many vulnerability detection approaches have been proposed in the past, existing detection approaches have the limitations in terms of false positive and false negative results. This paper proposes a context-sensitive approach based on static taint analysis and pattern matching techniques to detect and mitigate the XSS vulnerabilities in the source code of web applications. The proposed approach has been implemented in a prototype tool and evaluated on a public data set of 9408 samples. Experimental results show that proposed approach based tool outperforms over existing popular open source tools in the detection of XSS vulnerabilities.