Visible to the public Biblio

Filters: Author is Yanagisawa, D. K.  [Clear All Filters]
2023-05-12
Carroll, E. G., Bracamontes, G., Piston, K., James, G. F., Provencher, C. M., Javedani, J., Stygar, W. A., Povilus, A. P., Vonhof, S., Yanagisawa, D. K. et al..  2022.  A New Pulsed Power System for Generating Up To 40t Magnetic Seeds Fields for Cryogenic Inertial Confinement Fusion Experiments on The National Ignition Facility. 2022 IEEE International Conference on Plasma Science (ICOPS). :1–1.
A new pulse power system is being developed with the goal of generating up to 40T seed magnetic fields for increasing the fusion yield of indirect drive inertial confinement fusion (ICF) experiments on the National Ignition Facility. This pulser is located outside of the target chamber and delivers a current pulse to the target through a coaxial cable bundle and custom flex-circuit strip-lines integrated into a cryogenic target positioner. At the target, the current passes through a multi-turn solenoid wrapped around the outside of a hohlraum and is insulated with Kapton coating. A 11.33 uF capacitor, charged up to 40 kV and switched by spark-gap, drives up to 40 kA of current before the coil disassembles. A custom Python design optimization code was written to maximize peak magnetic field strength while balancing competing pulser, load and facility constraints. Additionally, using an institutional multi-physics code, ALE3D, simulations that include coil dynamics such as temperature dependent resistance, coil forces and motion, and magnetic diffusion were conducted for detailed analysis of target coils. First experiments are reported as well as comparisons with current modelling efforts.
ISSN: 2576-7208