Biblio
Filters: Author is Bretas, Arturo [Clear All Filters]
Two-Stage Optimization Framework for Detecting and Correcting Parameter Cyber-Attacks in Power System State Estimation. 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). :1—5.
.
2022. One major tool of Energy Management Systems for monitoring the status of the power grid is State Estimation (SE). Since the results of state estimation are used within the energy management system, the security of the power system state estimation tool is most important. The research in this area is targeting detection of False Data Injection attacks on measurements. Though this aspect is crucial, SE also depends on database that are used to describe the relationship between measurements and systems' states. This paper presents a two-stage optimization framework to not only detect, but also correct cyber-attacks pertaining the measurements' model parameters used by the SE routine. In the first stage, an estimate of the line parameters ratios are obtained. In the second stage, the estimated ratios from stage I are used in a Bi-Level model for obtaining a final estimate of the measurements' model parameters. Hence, the presented framework does not only unify the detection and correction in a single optimization run, but also provide a monitoring scheme for the SE database that is typically considered static. In addition, in the two stages, linear programming framework is preserved. For validation, the IEEE 118 bus system is used for implementation. The results illustrate the effectiveness of the proposed model for detecting attacks in the database used in the state estimation process.
Hybrid Data-Driven Physics-Based Model Framework Implementation: Towards a Secure Cyber-Physical Operation of the Smart Grid. 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). :1—5.
.
2022. False data injection cyber-attack detection models on smart grid operation have been much explored recently, considering analytical physics-based and data-driven solutions. Recently, a hybrid data-driven physics-based model framework for monitoring the smart grid is developed. However, the framework has not been implemented in real-time environment yet. In this paper, the framework of the hybrid model is developed within a real-time simulation environment. OPAL-RT real-time simulator is used to enable Hardware-in-the-Loop testing of the framework. IEEE 9-bus system is considered as a testing grid for gaining insight. The process of building the framework and the challenges faced during development are presented. The performance of the framework is investigated under various false data injection attacks.