Visible to the public Biblio

Filters: Author is Abbas, Qamber  [Clear All Filters]
2023-06-29
Abbas, Qamber, Zeshan, Muhammad Umar, Asif, Muhammad.  2022.  A CNN-RNN Based Fake News Detection Model Using Deep Learning. 2022 International Seminar on Computer Science and Engineering Technology (SCSET). :40–45.

False news has become widespread in the last decade in political, economic, and social dimensions. This has been aided by the deep entrenchment of social media networking in these dimensions. Facebook and Twitter have been known to influence the behavior of people significantly. People rely on news/information posted on their favorite social media sites to make purchase decisions. Also, news posted on mainstream and social media platforms has a significant impact on a particular country’s economic stability and social tranquility. Therefore, there is a need to develop a deceptive system that evaluates the news to avoid the repercussions resulting from the rapid dispersion of fake news on social media platforms and other online platforms. To achieve this, the proposed system uses the preprocessing stage results to assign specific vectors to words. Each vector assigned to a word represents an intrinsic characteristic of the word. The resulting word vectors are then applied to RNN models before proceeding to the LSTM model. The output of the LSTM is used to determine whether the news article/piece is fake or otherwise.