Visible to the public Biblio

Filters: Author is Vivekanandan, K.  [Clear All Filters]
2022-07-15
N, Praveena., Vivekanandan, K..  2021.  A Study on Shilling Attack Identification in SAN using Collaborative Filtering Method based Recommender Systems. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1—5.
In Social Aware Network (SAN) model, the elementary actions focus on investigating the attributes and behaviors of the customer. This analysis of customer attributes facilitate in the design of highly active and improved protocols. In specific, the recommender systems are highly vulnerable to the shilling attack. The recommender system provides the solution to solve the issues like information overload. Collaborative filtering based recommender systems are susceptible to shilling attack known as profile injection attacks. In the shilling attack, the malicious users bias the output of the system's recommendations by adding the fake profiles. The attacker exploits the customer reviews, customer ratings and fake data for the processing of recommendation level. It is essential to detect the shilling attack in the network for sustaining the reliability and fairness of the recommender systems. This article reviews the most prominent issues and challenges of shilling attack. This paper presents the literature survey which is contributed in focusing of shilling attack and also describes the merits and demerits with its evaluation metrics like attack detection accuracy, precision and recall along with different datasets used for identifying the shilling attack in SAN network.
2017-03-07
Manesh, T., El-atty, S. M. A., Sha, M. M., Brijith, B., Vivekanandan, K..  2015.  Forensic investigation framework for VoIP protocol. 2015 First International Conference on Anti-Cybercrime (ICACC). :1–7.

The deployment of Voice over Internet Protocol (VoIP) in place of traditional communication facilities has helped in huge reduction in operating costs, as well as enabled adoption of next generation communication services-based IP. At the same time, cyber criminals have also started intercepting environment and creating challenges for law enforcement system in any Country. At this instant, we propose a framework for the forensic analysis of the VoIP traffic over the network. This includes identifying and analyzing of network patterns of VoIP- SIP which is used for the setting up a session for the communication, and VoIP-RTP which is used for sending the data. Our network forensic investigation framework also focus on developing an efficient packet reordering and reconstruction algorithm for tracing the malicious users involved in conversation. The proposed framework is based on network forensics which can be used for content level observation of VoIP and regenerate original malicious content or session between malicious users for their prosecution in the court.