Visible to the public Biblio

Filters: Author is Elloumi, Mayssa  [Clear All Filters]
2023-07-21
Said, Dhaou, Elloumi, Mayssa.  2022.  A New False Data Injection Detection Protocol based Machine Learning for P2P Energy Transaction between CEVs. 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM). 4:1—5.
Without security, any network system loses its efficiency, reliability, and resilience. With the huge integration of the ICT capabilities, the Electric Vehicle (EV) as a transportation form in cities is becoming more and more affordable and able to reply to citizen and environmental expectations. However, the EV vulnerability to cyber-attacks is increasing which intensifies its negative impact on societies. This paper targets the cybersecurity issues for Connected Electric Vehicles (CEVs) in parking lots where a peer-to-peer(P2P) energy transaction system is launched. A False Data Injection Attack (FDIA) on the electricity price signal is considered and a Machine Learning/SVM classification protocol is used to detect and extract the right values. Simulation results are conducted to prove the effectiveness of this proposed model.