Visible to the public Biblio

Filters: Author is Ergenc, Doganalp  [Clear All Filters]
2023-08-18
Gawehn, Philip, Ergenc, Doganalp, Fischer, Mathias.  2022.  Deep Learning-based Multi-PLC Anomaly Detection in Industrial Control Systems. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :4878—4884.
Industrial control systems (ICSs) have become more complex due to their increasing connectivity, heterogeneity and, autonomy. As a result, cyber-threats against such systems have been significantly increased as well. Since a compromised industrial system can easily lead to hazardous safety and security consequences, it is crucial to develop security countermeasures to protect coexisting IT systems and industrial physical processes being involved in modern ICSs. Accordingly, in this study, we propose a deep learning-based semantic anomaly detection framework to model the complex behavior of ICSs. In contrast to the related work assuming only simpler security threats targeting individual controllers in an ICS, we address multi-PLC attacks that are harder to detect as requiring to observe the overall system state alongside single-PLC attacks. Using industrial simulation and emulation frameworks, we create a realistic setup representing both the production and networking aspects of industrial systems and conduct some potential attacks. Our experimental results indicate that our model can detect single-PLC attacks with 95% accuracy and multi-PLC attacks with 80% accuracy and nearly 1% false positive rate.