Visible to the public Biblio

Filters: Author is Chen, Yunhua  [Clear All Filters]
2021-06-28
Liu, Jia, Fu, Hongchuan, Chen, Yunhua, Shi, Zhiping.  2020.  A Trust-based Message Passing Algorithm against Persistent SSDF. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :1112–1115.
As a key technology in cognitive radio, cooperative spectrum sensing has been paid more and more attention. In cooperative spectrum sensing, multi-user cooperative spectrum sensing can effectively alleviate the performance degradation caused by multipath effect and shadow fading, and improve the spectrum utilization. However, as there may be malicious users in the cooperative sensing users, sending forged false messages to the fusion center or neighbor nodes to mislead them to make wrong judgments, which will greatly reduce the spectrum utilization. To solve this problem, this paper proposes an intelligent anti spectrum sensing data falsification (SSDF) attack algorithm using trust-based non consensus message passing algorithm. In this scheme, only one perception is needed, and the historical propagation path of each message is taken as the basis to calculate the reputation of each cognitive user. Every time a node receives different messages from the same cognitive user, there must be malicious users in its propagation path. We reward the nodes that appear more times in different paths with reputation value, and punish the nodes that appear less. Finally, the real value of the tampered message is restored according to the calculated reputation value. The MATLAB results show that the proposed scheme has a high recovery rate for messages and can identify malicious users in the network at the same time.
2017-03-08
Liu, Weijian, Chen, Zeqi, Chen, Yunhua, Yao, Ruohe.  2015.  An \#8467;1/2-BTV regularization algorithm for super-resolution. 2015 4th International Conference on Computer Science and Network Technology (ICCSNT). 01:1274–1281.

In this paper, we propose a novelregularization term for super-resolution by combining a bilateral total variation (BTV) regularizer and a sparsity prior model on the image. The term is composed of the weighted least squares minimization and the bilateral filter proposed by Elad, but adding an ℓ1/2 regularizer. It is referred to as ℓ1/2-BTV. The proposed algorithm serves to restore image details more precisely and eliminate image noise more effectively by introducing the sparsity of the ℓ1/2 regularizer into the traditional bilateral total variation (BTV) regularizer. Experiments were conducted on both simulated and real image sequences. The results show that the proposed algorithm generates high-resolution images of better quality, as defined by both de-noising and edge-preservation metrics, than other methods.