Visible to the public Biblio

Filters: Author is Cook, B.  [Clear All Filters]
2021-03-01
Zhang, Y., Groves, T., Cook, B., Wright, N. J., Coskun, A. K..  2020.  Quantifying the impact of network congestion on application performance and network metrics. 2020 IEEE International Conference on Cluster Computing (CLUSTER). :162–168.
In modern high-performance computing (HPC) systems, network congestion is an important factor that contributes to performance degradation. However, how network congestion impacts application performance is not fully understood. As Aries network, a recent HPC network architecture featuring a dragonfly topology, is equipped with network counters measuring packet transmission statistics on each router, these network metrics can potentially be utilized to understand network performance. In this work, by experiments on a large HPC system, we quantify the impact of network congestion on various applications' performance in terms of execution time, and we correlate application performance with network metrics. Our results demonstrate diverse impacts of network congestion: while applications with intensive MPI operations (such as HACC and MILC) suffer from more than 40% extension in their execution times under network congestion, applications with less intensive MPI operations (such as Graph500 and HPCG) are mostly not affected. We also demonstrate that a stall-to-flit ratio metric derived from Aries network counters is positively correlated with performance degradation and, thus, this metric can serve as an indicator of network congestion in HPC systems.
2017-03-08
Cook, B., Graceffo, S..  2015.  Semi-automated land/water segmentation of multi-spectral imagery. OCEANS 2015 - MTS/IEEE Washington. :1–7.

Segmentation of land and water regions is necessary in many applications involving analysis of remote sensing imagery. Not only is manual segmentation of these regions prone to considerable subjective variability, but the large volume of imagery collected by modern platforms makes manual segmentation extremely tedious to perform, particularly in applications that require frequent re-measurement. This paper examines a robust, semi-automated approach that utilizes simple and efficient machine learning algorithms to perform supervised classification of multi-spectral image data into land and water regions. By combining the four wavelength bands widely available in imaging platforms such as IKONOS, QuickBird, and GeoEye-1 with basic texture metrics, high quality segmentation can be achieved. An efficient workflow was created by constructing a Graphical User Interface (GUI) to these machine learning algorithms.