Biblio
The use of Knuth's Rule and Bayesian Blocks constant piecewise models for characterization of RFID traffic has been proposed already. This study presents an evaluation of the application of those two modeling techniques for various RFID traffic patterns. The data sets used in this study consist of time series of binned RFID command counts. More specifically., we compare the shape of several empirical plots of raw data sets we obtained from experimental RIFD readings., against the constant piecewise graphs produced as an output of the two modeling algorithms. One issue limiting the applicability of modeling techniques to RFID traffic is the fact that there are a large number of various RFID applications available. We consider this phenomenon to present the main motivation for this study. The general expectation is that the RFID traffic traces from different applications would be sequences with different histogram shapes. Therefore., no modeling technique could be considered universal for modeling the traffic from multiple RFID applications., without first evaluating its model performance for various traffic patterns. We postulate that differences in traffic patterns are present if the histograms of two different sets of RFID traces form visually different plot shapes.
Automated human facial image de-identification is a much needed technology for privacy-preserving social media and intelligent surveillance applications. Other than the usual face blurring techniques, in this work, we propose to achieve facial anonymity by slightly modifying existing facial images into "averaged faces" so that the corresponding identities are difficult to uncover. This approach preserves the aesthesis of the facial images while achieving the goal of privacy protection. In particular, we explore a deep learning-based facial identity-preserving (FIP) features. Unlike conventional face descriptors, the FIP features can significantly reduce intra-identity variances, while maintaining inter-identity distinctions. By suppressing and tinkering FIP features, we achieve the goal of k-anonymity facial image de-identification while preserving desired utilities. Using a face database, we successfully demonstrate that the resulting "averaged faces" will still preserve the aesthesis of the original images while defying facial image identity recognition.