Visible to the public Biblio

Filters: Author is Neema, Himanshu  [Clear All Filters]
2023-05-19
Neema, Himanshu, Roth, Thomas, Wang, Chenli, Guo, Wenqi Wendy, Bhattacharjee, Anirban.  2022.  Integrating Multiple HLA Federations for Effective Simulation-Based Evaluations of CPS. 2022 IEEE Workshop on Design Automation for CPS and IoT (DESTION). :19—26.
Cyber-Physical Systems (CPS) are complex systems of computational, physical, and human components integrated to achieve some function over one or more networks. The use of distributed simulation, or co-simulation, is one method often used to analyze the behavior and properties of these systems. High-Level Architecture (HLA) is an IEEE co-simulation standard that supports the development and orchestration of distributed simulations. However, a simple HLA federation constructed with the component simulations (i.e., federates) does not satisfy several requirements that arise in real-world use cases such as the shared use of limited physical and computational resources, the need to selectively hide information from participating federates, the creation of reusable federates and federations for supporting configurable shared services, achieving performant distributed simulations, organizing federations across different model types or application concerns, and coordinating federations across organizations with different information technology policies. This paper describes these core requirements that necessitate the use of multiple HLA federations and presents various mechanisms for constructing such integrated HLA federations. An example use case is implemented using a model-based rapid simulation integration framework called the Universal CPS Environment for Federation (UCEF) to illustrate these requirements and demonstrate techniques for integrating multiple HLA federations.
2021-05-20
Neema, Himanshu, Sztipanovits, Janos, Hess, David J., Lee, Dasom.  2020.  TE-SAT: Transactive Energy Simulation and Analysis Toolsuite. 2020 IEEE Workshop on Design Automation for CPS and IoT (DESTION). :19—20.

Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricing in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments.

2020-10-05
Zhou, Xingyu, Li, Yi, Barreto, Carlos A., Li, Jiani, Volgyesi, Peter, Neema, Himanshu, Koutsoukos, Xenofon.  2019.  Evaluating Resilience of Grid Load Predictions under Stealthy Adversarial Attacks. 2019 Resilience Week (RWS). 1:206–212.
Recent advances in machine learning enable wider applications of prediction models in cyber-physical systems. Smart grids are increasingly using distributed sensor settings for distributed sensor fusion and information processing. Load forecasting systems use these sensors to predict future loads to incorporate into dynamic pricing of power and grid maintenance. However, these inference predictors are highly complex and thus vulnerable to adversarial attacks. Moreover, the adversarial attacks are synthetic norm-bounded modifications to a limited number of sensors that can greatly affect the accuracy of the overall predictor. It can be much cheaper and effective to incorporate elements of security and resilience at the earliest stages of design. In this paper, we demonstrate how to analyze the security and resilience of learning-based prediction models in power distribution networks by utilizing a domain-specific deep-learning and testing framework. This framework is developed using DeepForge and enables rapid design and analysis of attack scenarios against distributed smart meters in a power distribution network. It runs the attack simulations in the cloud backend. In addition to the predictor model, we have integrated an anomaly detector to detect adversarial attacks targeting the predictor. We formulate the stealthy adversarial attacks as an optimization problem to maximize prediction loss while minimizing the required perturbations. Under the worst-case setting, where the attacker has full knowledge of both the predictor and the detector, an iterative attack method has been developed to solve for the adversarial perturbation. We demonstrate the framework capabilities using a GridLAB-D based power distribution network model and show how stealthy adversarial attacks can affect smart grid prediction systems even with a partial control of network.
2020-02-10
Neema, Himanshu, Vardhan, Harsh, Barreto, Carlos, Koutsoukos, Xenofon.  2019.  Web-Based Platform for Evaluation of Resilient and Transactive Smart-Grids. 2019 7th Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES). :1–6.
Today's smart-grids have seen a clear rise in new ways of energy generation, transmission, and storage. This has not only introduced a huge degree of variability, but also a continual shift away from traditionally centralized generation and storage to distributed energy resources (DERs). In addition, the distributed sensors, energy generators and storage devices, and networking have led to a huge increase in attack vectors that make the grid vulnerable to a variety of attacks. The interconnection between computational and physical components through a largely open, IP-based communication network enables an attacker to cause physical damage through remote cyber-attacks or attack on software-controlled grid operations via physical- or cyber-attacks. Transactive Energy (TE) is an emerging approach for managing increasing DERs in the smart-grids through economic and control techniques. Transactive Smart-Grids use the TE approach to improve grid reliability and efficiency. However, skepticism remains in their full-scale viability for ensuring grid reliability. In addition, different TE approaches, in specific situations, can lead to very different outcomes in grid operations. In this paper, we present a comprehensive web-based platform for evaluating resilience of smart-grids against a variety of cyber- and physical-attacks and evaluating impact of various TE approaches on grid performance. We also provide several case-studies demonstrating evaluation of TE approaches as well as grid resilience against cyber and physical attacks.
2019-02-13
Neema, Himanshu, Potteiger, Bradley, Koutsoukos, Xenofon, Karsai, Gabor, Volgyesi, Peter, Sztipanovits, Janos.  2018.  Integrated Simulation Testbed for Security and Resilience of CPS. Proceedings of the 33rd Annual ACM Symposium on Applied Computing. :368–374.
Owing1 to an immense growth of internet-connected and learning-enabled cyber-physical systems (CPSs) [1], several new types of attack vectors have emerged. Analyzing security and resilience of these complex CPSs is difficult as it requires evaluating many subsystems and factors in an integrated manner. Integrated simulation of physical systems and communication network can provide an underlying framework for creating a reusable and configurable testbed for such analyses. Using a model-based integration approach and the IEEE High-Level Architecture (HLA) [2] based distributed simulation software; we have created a testbed for integrated evaluation of large-scale CPS systems. Our tested supports web-based collaborative metamodeling and modeling of CPS system and experiments and a cloud computing environment for executing integrated networked co-simulations. A modular and extensible cyber-attack library enables validating the CPS under a variety of configurable cyber-attacks, such as DDoS and integrity attacks. Hardware-in-the-loop simulation is also supported along with several hardware attacks. Further, a scenario modeling language allows modeling of alternative paths (Courses of Actions) that enables validating CPS under different what-if scenarios as well as conducting cyber-gaming experiments. These capabilities make our testbed well suited for analyzing security and resilience of CPS. In addition, the web-based modeling and cloud-hosted execution infrastructure enables one to exercise the entire testbed using simply a web-browser, with integrated live experimental results display.
2017-04-24
Neema, Himanshu, Volgyesi, Peter, Potteiger, Bradley, Emfinger, William, Koutsoukos, Xenofon, Karsai, Gabor, Vorobeychik, Yevgeniy, Sztipanovits, Janos.  2016.  SURE: An Experimentation and Evaluation Testbed for CPS Security and Resilience: Demo Abstract. Proceedings of the 7th International Conference on Cyber-Physical Systems. :27:1–27:1.

In-depth consideration and evaluation of security and resilience is necessary for developing the scientific foundations and technology of Cyber-Physical Systems (CPS). In this demonstration, we present SURE [1], a CPS experimentation and evaluation testbed for security and resilience focusing on transportation networks. The testbed includes (1) a heterogeneous modeling and simulation integration platform, (2) a Web-based tool for modeling CPS in adversarial environments, and (3) a framework for evaluating resilience using attacker-defender games. Users such as CPS designers and operators can interact with the testbed to evaluate monitoring and control schemes that include sensor placement and traffic signal configuration.