Biblio
Hardware Trojan (HT) is one of the well known hardware security issue in research community in last one decade. HT research is mainly focused on HT detection, HT defense and designing novel HT's. HT's are inserted by an adversary for leaking secret data, denial of service attacks etc. Trojan benchmark circuits for processors, cryptography and communication protocols from Trust-hub are widely used in HT research. And power analysis based side channel attacks and designing countermeasures against side channel attacks is a well established research area. Trust-Hub provides a power based side-channel attack promoting Advanced Encryption Standard (AES) HT benchmarks for research. In this work, we analyze the strength of AES HT benchmarks in the presence well known side-channel attack countermeasures. Masking, Random delay insertion and tweaking the operating frequency of clock used in sensitive operations are applied on AES benchmarks. Simulation and power profiling studies confirm that side-channel promoting HT benchmarks are resilient against these selected countermeasures and even in the presence of these countermeasures; an adversary can get the sensitive data by triggering the HT.
Globalization of semiconductor design, manufacturing, packaging and testing has led to several security issues like over production of chips, shipping of faulty or partially functional chips, intellectual property infringement, cloning, counterfeit chips and insertion of hardware trojans in design house or at foundry etc. Adversaries will extract chips from obsolete PCB's and release used parts as new chips into the supply chain. The faulty chips or partially functioning chips can enter supply chain from untrusted Assembly Packaging and Test (APT) centers. These counterfeit parts are not reliable and cause catastrophic consequences in critical applications. To mitigate the counterfeits entering supply chain, to protect the Intellectual Property (IP) rights of owners and to meter the chip, Secure Split Test (SST) is a promising solution. CSST (Connecticut SST) is an improvement to SST, which simplifies the communication required between ATP center and design house. CSST addresses the scan tests, but it does not address the functional testing of chips. The functional testing of chips during production testing is critical in weeding out faulty chips in recent times. In this paper, we present a method called PUF-SST (Physical Unclonable Function – SST) to perform both scan tests and functional tests without compromising on security features described in CSST.