Visible to the public Biblio

Filters: Author is Majumdar, R.  [Clear All Filters]
2020-02-10
Majumdar, R., Gayen, P. K., Mondal, S., Sadhukhan, A., Das, P. K., Kushary, I..  2019.  A Cyber Communication Package in the Application of Grid Tied Solar System. 2019 Devices for Integrated Circuit (DevIC). :146–150.

In this paper, development of cyber communication package in the application of grid connected solar system has been presented. Here, implemented communication methodology supports communication process with reduced latency, high security arrangement with various degrees of freedom. Faithful transferring of various electrical data for the purpose of measurement, monitoring and controlling actions depend on the bidirectional communication strategy. Thus, real-time communication of data through cyber network has been emphasized in this paper. The C\# language based coding is done to develop the communication program. The notable features of proposed communication process are reduction of latency during data exchange by usage of advanced encryption standard (AES) algorithm, tightening of cyber security arrangement by implementing secured socket layer (SSL) and Rivest, Shamir and Adleman (RSA) algorithms. Various real-time experiments using internet connected computers have been done to verify the usability of the proposed communication concept along with its notable features in the application.

2017-03-08
Saxena, U., Bachhan, O. P., Majumdar, R..  2015.  Static and dynamic malware behavioral analysis based on arm based board. 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom). :272–277.

A trap set to detect attempts at unauthorized use of information systems. But setting up these honeypots and keep these guzzling electricity 24X7 is rather expensive. Plus there is always a risk of a skillful hacker or a deadly malware may break through this and compromise the whole system. Honeypot name suggest, a pot that contents full of honey to allure beers, but in networks Scenario honeypot is valuable tool that helps to allure attackers. It helps to detect and analyze malicious activity over your network. However honeypots used for commercial organization do not share data and large honeypot gives read only data. We propose an Arm based device having all capability of honeypots to allure attackers. Current honeypots are based on large Network but we are trying to make s device which have the capabilities to establish in small network and cost effective. This research helps us to make a device based on arm board and CCFIS Software to allure attackers which is easy to install and cost effective. CCFIS Sensor helps us to Capture malware and Analysis the attack. In this we did reverse Engineering of honeypots to know about how it captures malware. During reverse engineering we know about pros and cons of honeypots that are mitigated in CCFIS Sensor. After Completion of device we compared honeypots and CCFIS Sensor to check the effectiveness of device.