Visible to the public Biblio

Filters: Author is Namin, A. S.  [Clear All Filters]
2017-11-27
Pang, Y., Xue, X., Namin, A. S..  2016.  Early Identification of Vulnerable Software Components via Ensemble Learning. 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA). :476–481.

Software components, which are vulnerable to being exploited, need to be identified and patched. Employing any prevention techniques designed for the purpose of detecting vulnerable software components in early stages can reduce the expenses associated with the software testing process significantly and thus help building a more reliable and robust software system. Although previous studies have demonstrated the effectiveness of adapting prediction techniques in vulnerability detection, the feasibility of those techniques is limited mainly because of insufficient training data sets. This paper proposes a prediction technique targeting at early identification of potentially vulnerable software components. In the proposed scheme, the potentially vulnerable components are viewed as mislabeled data that may contain true but not yet observed vulnerabilities. The proposed hybrid technique combines the supports vector machine algorithm and ensemble learning strategy to better identify potential vulnerable components. The proposed vulnerability detection scheme is evaluated using some Java Android applications. The results demonstrated that the proposed hybrid technique could identify potentially vulnerable classes with high precision and relatively acceptable accuracy and recall.

2017-03-08
Darabseh, A., Namin, A. S..  2015.  On Accuracy of Classification-Based Keystroke Dynamics for Continuous User Authentication. 2015 International Conference on Cyberworlds (CW). :321–324.

The aim of this research is to advance the user active authentication using keystroke dynamics. Through this research, we assess the performance and influence of various keystroke features on keystroke dynamics authentication systems. In particular, we investigate the performance of keystroke features on a subset of most frequently used English words. The performance of four features such as i) key duration, ii) flight time latency, iii) diagraph time latency, and iv) word total time duration are analyzed. Two machine learning techniques are employed for assessing keystroke authentications. The selected classification methods are support vector machine (SVM), and k-nearest neighbor classifier (K-NN). The logged experimental data are captured for 28 users. The experimental results show that key duration time offers the best performance result among all four keystroke features, followed by word total time.