Visible to the public Biblio

Filters: Author is Schuckers, S.  [Clear All Filters]
2018-02-27
Huang, J., Hou, D., Schuckers, S..  2017.  A Practical Evaluation of Free-Text Keystroke Dynamics. 2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA). :1–8.

Free text keystroke dynamics is a behavioral biometric that has the strong potential to offer unobtrusive and continuous user authentication. Unfortunately, due to the limited data availability, free text keystroke dynamics have not been tested adequately. Based on a novel large dataset of free text keystrokes from our ongoing data collection using behavior in natural settings, we present the first study to evaluate keystroke dynamics while respecting the temporal order of the data. Specifically, we evaluate the performance of different ways of forming a test sample using sessions, as well as a form of continuous authentication that is based on a sliding window on the keystroke time series. Instead of accumulating a new test sample of keystrokes, we update the previous sample with keystrokes that occur in the immediate past sliding window of n minutes. We evaluate sliding windows of 1 to 5, 10, and 30 minutes. Our best performer using a sliding window of 1 minute, achieves an FAR of 1% and an FRR of 11.5%. Lastly, we evaluate the sensitivity of the keystroke dynamics algorithm to short quick insider attacks that last only several minutes, by artificially injecting different portions of impostor keystrokes into the genuine test samples. For example, the evaluated algorithm is found to be able to detect insider attacks that last 2.5 minutes or longer, with a probability of 98.4%.

2017-03-08
Huang, J., Hou, D., Schuckers, S., Hou, Z..  2015.  Effect of data size on performance of free-text keystroke authentication. IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015). :1–7.

Free-text keystroke authentication has been demonstrated to be a promising behavioral biometric. But unlike physiological traits such as fingerprints, in free-text keystroke authentication, there is no natural way to identify what makes a sample. It remains an open problem as to how much keystroke data are necessary for achieving acceptable authentication performance. Using public datasets and two existing algorithms, we conduct two experiments to investigate the effect of the reference profile size and test sample size on False Alarm Rate (FAR) and Imposter Pass Rate (IPR). We find that (1) larger reference profiles will drive down both IPR and FAR values, provided that the test samples are large enough, and (2) larger test samples have no obvious effect on IPR, regardless of the reference profile size. We discuss the practical implication of our findings.