Biblio
Various studies have been performed to explore the feasibility of detection of web-based attacks by machine learning techniques. False-positive and false-negative results have been reported as a major issue to be addressed to make machine learning-based detection and prevention of web-based attacks reliable and trustworthy. In our research, we tried to identify and address the root cause of the false-positive and false-negative results. In our experiment, we used the CSIC 2010 HTTP dataset, which contains the generated traffic targeted to an e-commerce web application. Our experimental results demonstrate that applying the proposed fine-tuned feature set extraction results in improved detection and classification of web-based attacks for all tested machine learning algorithms. The performance of the machine learning algorithm in the detection of attacks was evaluated by the Precision, Recall, Accuracy, and F-measure metrics. Among three tested algorithms, the J48 decision tree algorithm provided the highest True Positive rate, Precision, and Recall.
Information security management is time-consuming and error-prone. Apart from day-to-day operations, organizations need to comply with industrial regulations or government directives. Thus, organizations are looking for security tools to automate security management tasks and daily operations. Security Content Automation Protocol (SCAP) is a suite of specifications that help to automate security management tasks such as vulnerability measurement and policy compliance evaluation. SCAP benchmark provides detailed guidance on setting the security configuration of network devices, operating systems, and applications. Organizations can use SCAP benchmark to perform automated configuration compliance assessment on network devices, operating systems, and applications. This paper discusses SCAP benchmark components and the development of a SCAP benchmark for automating Cisco router security configuration compliance.