Visible to the public Biblio

Filters: Author is Hiller, Matthias  [Clear All Filters]
2020-02-10
Auer, Lukas, Skubich, Christian, Hiller, Matthias.  2019.  A Security Architecture for RISC-V based IoT Devices. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :1154–1159.

New IoT applications are demanding for more and more performance in embedded devices while their deployment and operation poses strict power constraints. We present the security concept for a customizable Internet of Things (IoT) platform based on the RISC-V ISA and developed by several Fraunhofer Institutes. It integrates a range of peripherals with a scalable computing subsystem as a three dimensional System-in-Package (3D-SiP). The security features aim for a medium security level and target the requirements of the IoT market. Our security architecture extends given implementations to enable secure deployment, operation, and update. Core security features are secure boot, an authenticated watchdog timer, and key management. The Universal Sensor Platform (USeP) SoC is developed for GLOBALFOUNDRIES' 22FDX technology and aims to provide a platform for Small and Medium-sized Enterprises (SMEs) that typically do not have access to advanced microelectronics and integration know-how, and are therefore limited to Commercial Off-The-Shelf (COTS) products.

2017-03-20
Hiller, Matthias, Önalan, Aysun Gurur, Sigl, Georg, Bossert, Martin.  2016.  Online Reliability Testing for PUF Key Derivation. Proceedings of the 6th International Workshop on Trustworthy Embedded Devices. :15–22.

Physical Unclonable Functions (PUFs) measure manufacturing variations inside integrated circuits to derive internal secrets during run-time and avoid to store secrets permanently in non-volatile memory. PUF responses are noisy such that they require error correction to generate reliable cryptographic keys. To date, when needed one single key is reproduced in the field and always used, regardless of its reliability. In this work, we compute online reliability information for a reproduced key and perform multiple PUF readout and error correction steps in case of an unreliable result. This permits to choose the most reliable key among multiple derived key candidates with different corrected error patterns. We achieve the same average key error probability from less PUF response bits with this approach. Our proof of concept design for a popular reference scenario uses Differential Sequence Coding (DSC) and a Viterbi decoder with reliability output information. It requires 39% less PUF response bits and 16% less helper data bits than the regular approach without the option for multiple readouts.